rev 0.2

Low Voltage 1:18 Clock Distribution Chip

Features

- LVCMOS/LVTTL Clock Input
- 2.5 V LVCMOS Outputs for Pentium $\mathrm{II}^{\mathrm{TM}}$ Microprocessor Support
- 150pS Maximum Targeted Output-to-Output Skew
- Maximum Output Frequency of 250 MHz @ 3.3 VCC
- 32-Lead TQFP and LQFP Packaging
- Single 3.3 V or 2.5 V Supply.
- Pin and Function compatible to MPC942C.

Functional Description

The ASM2I9942C is a $1: 18$ low voltage clock distribution chip with 2.5 V or 3.3 V LVCMOS output capabilities. The device is offered in two versions; the ASM2I9942C has an LVCMOS input clock while the ASM2I9942P has an LVPECL input clock. The 18 outputs are 2.5 V or 3.3 V LVCMOS compatible and feature the drive strength to drive 50Ω series or parallel terminated transmission lines. With output-to-output skews of 200 pS , the ASM219942C is ideal as a clock distribution chip for the most demanding of synchronous systems. The 2.5 V outputs also make the
device ideal for supplying clocks for a high performance Pentium II ${ }^{\text {TM }}$ microprocessor based design.

With a low output impedance ($\approx 12 \Omega$), in both the HIGH and LOW logic states, the output buffers of the ASM219942C are ideal for driving series terminated transmission lines. With an output impedance of 12Ω, the ASM2I9942C can drive two series terminated transmission lines from each output. This capability gives the ASM219942C an effective fanout of 1:36. The ASM219942C provides enough copies of low skew clocks for most high performance synchronous systems.

The LVCMOS/LVTTL input of the ASM219942C provides a more standard LVCMOS interface. The OE pins will place the outputs into a high impedance state. The OE pin has an internal pullup resistor.

The ASM219942C is a single supply device. The V_{cc} power pins require either 2.5 V or 3.3 V . The 32 -lead TQFP and LQFP package is chosen to optimize performance, board space and cost of the device. The 32-lead TQFP has a $7 \times 7 \mathrm{~mm}^{2}$ body size with a conservative 0.8 mm pin spacing.

[^0]rev 0.2

Block Diagram

Table 1. Function Table

OE	Output
0	HIGH IMPEDANCE
1	OUTPUTS ENABLED

Pin Diagram

May 2005
ASM2I9942C
rev 0.2
Table 2. Pin Configuration

Pin \#	Pin Name	I/O	Type	Function
$1,2,12,17,25$	GND	Supply	Ground	
3	LVCMOS_CLK	Input	LVCMOS	LVCMOS Clock Input
4,6	NC	-	-	No Connect
5	OE	Input	LVCMOS	Outputs are enabled, when OE is high and are tri-stated, when OE is made low.
$7,8,16,21,29$	VCC	Supply	VCC	Positive power supply
$9-11$	Q17-Q15	Output	LVCMOS	Clock outputs
$13-15$	Q14-Q12	Output	LVCMOS	Clock outputs
$18-20$	Q11-Q9	Output	LVCMOS	Clock outputs
$22-24$	Q8-Q6	Output	LVCMOS	Clock outputs
$26-28$	Q5-Q3	Output	LVCMOS	Clock outputs
$30-32$	Q2-Q0	LVCMOS	Clock outputs	

Table 3. Absolute Maximum Rating ${ }^{1}$

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	-0.3	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
I_{IN}	Input Current		± 20	mA
$\mathrm{~T}_{\text {Stor }}$	Storage Temperature Range	-40	125	${ }^{\circ} \mathrm{C}$

Note: 1These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.

Table 4. DC Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%\right)$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage	2.0		$\mathrm{~V}_{\mathrm{CCI}}$	V	
V_{IL}	Input LOW Voltage			0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	2.0			V	$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage			0.5	V	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$
I_{IN}	Input Current			± 200	$\mu \mathrm{~A}$	
C_{IN}	Input Capacitance		4.0		pF	
C_{PD}	Power Dissipation Capacitance		14		pF	Per Output
$\mathrm{Z}_{\mathrm{OUT}}$	Output Impedance		12		Ω	
I_{CC}	Maximum Quiescent Supply Current		0.5		mA	

rev 0.2
Table 5. AC Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{ot}_{0} 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{F}_{\text {max }}$	Maximum Frequency			200	MHz	
tPLH	Propagation Delay ${ }^{1}$	1.5		2.8	nS	
$\mathrm{tsk}_{\text {sk }}(\mathrm{o}$	Output-to-output Skew Within one bank Any output, Any Bank			$\begin{aligned} & 150 \\ & 350 \end{aligned}$	pS	
$\mathrm{t}_{\text {sk }}(\mathrm{pr})$	Part-to-Part Skew ${ }^{1,2}$			1.3	nS	
$\mathrm{t}_{\mathrm{sk}}(\mathrm{pr})$	Part-to-Part Skew ${ }^{1,3}$			600	pS	
d_{t}	Duty Cycle	45		55	\%	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time	0.2		1.0	nS	

Note: 1.Tested using standard input levels, production tested @ 133 MHz .
2.Across temperature and voltage ranges, includes output skew.
3.For a specific temperature and voltage, includes output skew.

Table 6. DC Characteristics ($T_{A}=0^{\circ}{ }^{\circ} 070^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage	2.4		$\mathrm{~V}_{\mathrm{CCI}}$	V	
V_{IL}	Input LOW Voltage			0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage			0.5	V	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
I_{IN}	Input Current			± 200	$\mu \mathrm{~A}$	
C_{IN}	Input Capacitance		4.0		pF	
C_{PD}	Power Dissipation Capacitance		14		pF	Per Output
$\mathrm{Z}_{\mathrm{OUT}}$	Output Impedance		12		Ω	
I_{CC}	Maximum Quiescent Supply Current		0.5		mA	

Table 7. AC Characteristics $\left(T_{A}=0^{\circ}+070^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 5 \%\right.$)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{F}_{\text {max }}$	Maximum Frequency			250	MHz	
tply	Propagation Delay ${ }^{1}$	1.3		2.3	nS	
$\mathrm{t}_{\mathrm{sk}(0)}$	Output-to-output Skew Within one bank Any Output, Any Bank			$\begin{aligned} & 150 \\ & 350 \end{aligned}$	pS	
$\mathrm{t}_{\text {sk(pr) }}$	Part-to-Part Skew ${ }^{1,2}$			1.0	nS	
$\mathrm{t}_{\text {sk(pr) }}$	Part-to-Part Skew ${ }^{1,3}$			500	pS	
d_{t}	Duty Cycle	45		55	\%	
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time	0.2		1.0	nS	

Note: 1.Tested using standard input levels, production tested @ 133 MHz .
2. Across temperature and voltage ranges, includes output skew.
3. For a specific temperature and voltage, includes output skew.

rev 0.2

Power Consumption of the ASM219942C and Thermal Management

The ASM2I9942C AC specification is guaranteed for the entire operating frequency range up to 250 MHz . The ASM2I9942C power consumption and the associated long-term reliability may decrease the maximum frequency limit, depending on operating conditions such as clock frequency, supply voltage, output loading, ambient temperature, vertical convection and thermal conductivity of package and board. This section describes the impact of these parameters on the junction temperature and gives a guideline to estimate the ASM2I9942C die junction temperature and the associated device reliability.

Table 8. Die junction temperature and MTBF

Junction temperature (${ }^{\circ} \mathrm{C}$)	MTBF (Years)
100	20.4
110	9.1
120	4.2
130	2.0

Increased power consumption will increase the die junction temperature and impact the device reliability (MTBF). According to the system-defined tolerable MTBF, the die junction temperature of the ASM2I9942C needs to be controlled and the thermal impedance of the board/package should be optimized. The power dissipated in the ASM2I9942C is represented in equation1.

Where $I_{c c Q}$ is the static current consumption of the ASM2I9942C, C_{PD} is the power dissipation capacitance per output, (M) ΣC_{L} represents the external capacitive output load, N is the number of active outputs (N is always 12 in case of the ASM219942C). The ASM2I9942C supports driving transmission lines to maintain high signal integrity and tight timing parameters. Any transmission line will hide the lumped capacitive load at the end of the board trace, therefore, ΣC_{L} is zero for controlled transmission line systems and can be eliminated from equation 1. Using parallel termination output termination results in equation 2 for power dissipation.

In equation 2, P stands for the number of outputs with a parallel or thevenin termination. $\mathrm{V}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$ and I_{OH} are a function of the output termination technique and DC_{Q} is the clock signal duty cycle. If transmission lines are used ΣC_{L} is zero in equation 2 and can be eliminated. In general, the use of controlled transmission line techniques eliminates the impact of the lumped capacitive loads at the end lines and greatly reduces the power dissipation of the device. Equation 3 describes the die junction temperature T_{J} as a function of the power consumption.

Where $R_{\text {thja }}$ is the thermal impedance of the package (junction to ambient) and T_{A} is the ambient temperature. According to Table 8, the junction temperature can be used to estimate the long-term device reliability. Further, combining equation 1 and equation 2 results in a maximum operating frequency for the ASM2I9942C in a series terminated transmission line system, equation 4.
$P_{\text {TOT }}=\left[I_{\text {CСQ }}+V_{\text {CC }} \cdot f_{\text {CLOCK }} \cdot\left(N \cdot C_{P D}+\sum_{M} C_{L}\right)\right] \cdot V_{C C}$
Equation 1
$P_{\text {TOT }}=V_{C C} \cdot\left[I_{C C Q}+V_{C C} \cdot f_{C L O C K} \cdot\left(N \cdot C_{P D}+\sum_{M} C_{L}\right)\right]+\sum_{P}\left[D C_{Q} \cdot I_{O H}\left(V_{C C}-V_{O H}\right)+\left(1-D C_{Q}\right) \cdot I_{O L} \cdot V_{O L}\right]$ Equation 2
$T_{J}=T_{A}+P_{\text {TOT }} \cdot R_{t h j a}$ Equation 3
$f_{\text {CLOCKMAX }}=\frac{1}{C_{P D} \cdot N \cdot V_{C C}^{2}} \cdot\left[\frac{T_{J, M A X}-T_{A}}{R_{t h j a}}-\left(I_{C C Q} \cdot V_{C C}\right)\right]$
rev 0.2

TJ,MAX should be selected according to the MTBF system requirements and Table 8. $\mathrm{R}_{\text {thja }}$ can be derived from Table 9. The $\mathrm{R}_{\mathrm{thja}}$ represent data based on 1S2P boards, using 2S2P boards will result in a lower thermal impedance than indicated below.

Table 9. Thermal package impedance of the 32LQFP

Convection, LFPM	$\mathbf{R}_{\text {thia }}(1 P 2 S$ board), ${ }^{\circ} \mathbf{C / W}$	$\mathbf{R}_{\text {thia }}(2 \mathbf{2 P 2 S}$ board), ${ }^{\circ} \mathbf{C / W}$
Still air	86	61
100 Ifpm	76	56
200 lfpm	71	54
300 lfpm	68	53
400 lfpm	66	52
500 lfpm	60	49

If the calculated maximum frequency is below 350 MHz , it becomes the upper clock speed limit for the given application conditions. The following eight derating charts describe the safe frequency operation range for the ASM2I9942C. The charts were calculated for a maximum tolerable die junction temperature of $110^{\circ} \mathrm{C}\left(120^{\circ} \mathrm{C}\right)$, corresponding to an estimated MTBF of 9.1 years (4 years), a supply voltage of 3.3 V and series terminated transmission line or capacitive loading. Depending on a given set of these operating conditions and the available device convection a decision on the maximum operating frequency can be made.
rev 0.2

Package Information

32-lead LQFP Package

SECTION A-A

Symbol	Dimensions				
	Inches		Millimeters		
	Min	Max	Min	Max	
A	\ldots.	0.0630	\ldots	1.6	
A1	0.0020	0.0059	0.05	0.15	
A2	0.0531	0.0571	1.35	1.45	
D	0.3465	0.3622	8.8	9.2	
D1	0.2717	0.2795	6.9	7.1	
E	0.3465	0.3622	8.8	9.2	
E1	0.2717	0.2795	6.9	7.1	
L	0.0177	0.0295	0.45	0.75	
L1	0.03937	REF	1.00 REF		
T	0.0035	0.0079	0.09	0.2	
T1	0.0038	0.0062	0.097	0.157	
b	0.0118	0.0177	0.30	0.45	
b1	0.0118	0.0157	0.30	0.40	
R0	0.0031	0.0079	0.08	0.20	
e	0.031		BASE	0.8 BASE	
a	0°	77°	0°	7°	

rev 0.2

32-lead TQFP Package

Symbol	Dimensions				
	Inches		Millimeters		
	Min	Max	Min	Max	
A	\ldots.	0.0472	\ldots	1.2	
A1	0.0020	0.0059	0.05	0.15	
A2	0.0374	0.0413	0.95	1.05	
D	0.3465	0.3622	8.8	9.2	
D1	0.2717	0.2795	6.9	7.1	
E	0.3465	0.3622	8.8	9.2	
E1	0.2717	0.2795	6.9	7.1	
L	0.0177	0.0295	0.45	0.75	
L1	0.03937	REF	1.00 REF		
T	0.0035	0.0079	0.09	0.2	
T1	0.0038	0.0062	0.097	0.157	
b	0.0118	0.0177	0.30	0.45	
b1	0.0118	0.0157	0.30	0.40	
R0	0.0031	0.0079	0.08	0.2	
a	0°		7°	0°	
e	0.031		BASE	0.8 BASE	

rev 0.2

Ordering Information

Ordering Code	Top Mark	Package Type	Operating Range
ASM2I9942C-32-LT	ASM2I9942CL	32-pin LQFP, Tray	Industrial
ASM2I9942C-32-LR	ASM219942CL	32-pin LQFP -Tape and Reel	Industrial
ASM2I9942CG-32-LT	ASM2I9942CGL	32-pin LQFP, Tray, Green	Industrial
ASM2I9942CG-32-LR	ASM2I9942CGL	32-pin LQFP -Tape and Reel, Green	Industrial
ASM2I9942C-32-ET	ASM2I9942CE	32-pin TQFP, Tray	Industrial
ASM2I9942C-32-ER	ASM219942CE	32-pin TQFP -Tape and Reel	Industrial
ASM2I9942CG-32-ET	ASM219942CGE	32-pin TQFP, Tray, Green	Industrial
ASM2I9942CG-32-ER	ASM219942CGE	32-pin TQFP -Tape and Reel, Green	Industrial

Device Ordering Information

ALLIANCE SEMICONDUCTOR MIXED SIGNAL PRODUCT
rev 0.2

Note: This product utilizes US Patent \# 6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003
© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.

[^0]: *Pentium II is a trademark of Intel Corporation

